

The following tables include the data collected by SCCWRP on September 10-11, 2000, for identified stormwater flows in the LA River watershed. Table E-1 includes the flows that were used in the model for the LA River system. Table E-2 includes those flows that were identified but not used in the modeling because their flows were insufficient. Stormwater flows included in the model (Table E-1) are located on the LA River mainstem, Compton Creek, Arroyo Seco, Verdugo Wash and Bell Creek. No stormwater flows were included in Rio Hondo, Burbank Western Channel or Tujanga Wash.

Table E-1. Stormwater Flows Represented in the Model Calibration/Comparison for the LA River System

Widuel Ca	alibialic		ipai isui	i ioi tiie	LA KIVEI	System
Location	Flow (cms)	Cell (I)	Cell (J)	Copper (mg/L)	Lead (mg/L)	Zinc (mg/L)
	LA Main Stem					<u> </u>
1-3	0.0029	50	142	0.017	0.005	0.005
3-1	0.0094	50	140	0.021	0.012	0.027
3-2	0.0734	50	136	0.014	0.005	0.005
4-1	0.0025	50	134	0.010	0.005	0.012
4-2	0.0035	50	134	0.019	0.005	0.023
4-10	0.0035	50	132	0.005	0.005	0.005
5-1	0.0014	50	129	0.005	0.005	0.025
5-2	0.0046	50	127	0.005	0.022	0.035
6-1	0.0024	50	121	0.005	0.005	0.025
7-1	0.0017	50	114	0.005	0.005	0.005
7-3	0.0050	50	112	0.005	0.005	0.005
7-4	0.0050	50	106	0.025	0.005	0.027
9-2	0.0004	50	110	0.005	0.005	0.046
10-1	0.0041	50	93	0.005	0.005	0.055
10-2	0.0003	50	87	0.005	0.005	0.023
10-3	0.0003	50	87	0.005	0.005	0.058
11-1	0.0125	50	85	0.005	0.005	0.016
11-2	0.0163	50	81	0.005	0.005	0.028
12-2	0.0021	50	81	0.005	0.005	0.005
13-1	0.1311	50	73	0.005	0.005	0.005
13-2	0.0283	50	71	0.005	0.005	0.005
13-3	0.0393	50	65	0.005	0.005	0.064
14-1	0.0104	50	69	0.005	0.005	0.014
14-2	0.0607	50	66	0.016	0.005	0.018
14-3	0.0089	50	65	0.005	0.005	0.014
14-4	0.0355	50	64	0.020	0.005	0.017
15-1	0.1600	50	54	0.005	0.005	0.005
15-2	0.0001	50	52	0.005	0.005	0.021
15-3	0.0202	50	52	0.005	0.005	0.005
16-1	0.0106	50	55	0.005	0.005	0.017
17-1	0.0182	50	43	0.005	0.005	0.005
19-1	0.0472	50	35	0.005	0.005	0.005

July 2004 E-1

Location	Flow (cms)	Cell (I)	Cell (J)	Copper (mg/L)	Lead (mg/L)	Zinc (mg/L)
22-2	0.0025	50	20	0.005	0.005	0.005
	Compton Creek					
22-1	0.0028	50	24	0.005	0.005	0.005
Arroyo Seco						
27-1	0.0014			0.005	0.005	0.005
27-2	0.0576			0.024	0.005	0.207
27-3	0.0204			0.005	0.005	0.005
28-1	0.0001			0.005	0.005	0.033
28-2	0.00002			0.005	0.005	0.035
28-3	0.00001			0.130	0.005	0.970
29-1	0.0002			0.005	0.005	0.005
29-2	0.0165			0.005	0.005	0.020
29-3	0.0088			0.005	0.005	0.005
Verdugo Wash						
26-1	0.0023			0.023	0.005	0.038
26-2	0.0037			0.005	0.005	0.005
26-3	0.0354			0.018	0.005	0.035
Bell Creek						
1-1	0.0413	57	146	0.005	0.042	0.005
1-2	0.0462	54	146	0.018	0.019	0.005

E-2 July 2004

Table E-2. Stormwater Flows Not Used in the Modeling

	Flow
Location	(cms)
2-1	INSUFF
2-2	INSUFF
3-3	INSUFF
6-2	INSUFF
6-3	INSUFF
8-1	INSUFF
8-2	INSUFF
8-3	INSUFF
9-1	INSUFF
11-3	0.0000
12-1	INSUFF
13-4	INSUFF
17-2	0.0000
17-3	INSUFF
21-1	INSUFF
23-1	0.1092
23-2	0.1323
30-1	INSUFF

^{*} Stormwater flows 23-1 and 23-2 were located on Calbassas Creek and were used in determining the flow and water quality for the headwaters of the Los Angeles River.

July 2004 E-3